Pandas HDFStore function append() in Python
The Pandas HDFStore function used to append data to Table in file.
Syntax
 1 Pandas.HDFStore.append(key, value, format = None, axes = None, index = True, append = True,
 2  complib = None, complevel = None, columns = None, min_itemsize = None, nan_rep = None,
 3  chunksize = None, expectedrows = None, dropna = None, data_columns = None, encoding = None, errors = 'strict')
key : It is string that specifies the key for the specified object in the HDFStore object.
value : It is actual value that will be mapped with key in the HDFStore object.
format : It is string that specifies the format to use when storing object in HDFStore. If not specified, the default value will be table.
1. table : It specifies Table format. Write as a PyTable Table structure which may perform worse but allow more flexible operations like searching and selecting subsets of the data.
index : It is boolean that write DataFrame index as a column. If not specified, the default value will be True.
append : It is boolean value that will force Table format, append the input data to the existing. If not specified, the default value will be False.
data_columns : It is list of columns or True.
1. list : it specifies the list of columns to create as data columns.2. True : It specified, it includes all columns.
min_itemsize : It is dictionary of columns that specifies the minimum str sizes.
nan_rep : It is string that specifies the string to use for nan value.
chunksize : It is string that specifies the size to chunk while writing.
expectedrows : It is expected TOTAL rows size of this table.
encoding : It is string that provide an encoding for strings. If not specified, the default value will be None.
dropna : It is boolean that specifies whether to remove missing value. If not specified, the default value will be False.
append() function
 1 import pandas as pd
 2 
 3 store = pd.HDFStore('data1.h5')
 4 
 5 df = pd.DataFrame([['a', 'b'], ['c', 'd']],
 6         index = ['R1', 'R2'],
 7         columns = ['C1', 'C2'])
 8 # append dataframe object
 9 store.append('df', df)
 10 
 11 res = store.select('df')
 12 print('The selected key value is :')
 13 print(res)
 14 
 15 # close store, otherwise, automatically closed
 16 store.close()
In the above example, a HDFStore object is created by passing a name. An append() function is called by passing an key and DataFrame object. A select() function is called by passing a key that retrieves the mapped object and assign to the variable that will be printed on console.
Output
 1 The selected key value is :
 2    C1 C2
 3 R1  a  b
 4 R2  c  d
Note : If you execute above example multiple time, it will append new rows each time.
Install tables
 1 # install tables if not (pytables)
 2 pip install tables

Example 2

Example 2
 1 import pandas as pd
 2 
 3 store = pd.HDFStore('data1.h5')
 4 
 5 df = pd.DataFrame([[1, 2], [3, 4]],
 6         index = ['x1', 'x2'],
 7         columns = ['A1', 'A2'])
 8 # append dataframe object
 9 store.append('df', df)
 10 
 11 res = store.select('df')
 12 print('The selected key value is :')
 13 print(res)
 14 
 15 # close store, otherwise, automatically closed
 16 store.close()
In the above example, a HDFStore object is created by passing a name. An append() function is called by passing an key and DataFrame object. A select() function is called by passing a key that retrieves the mapped object and assign to the variable that will be print.
Output
 1 The selected key value is :
 2     A1  A2
 3 x1   1   2
 4 x2   3   4
Privacy Policy
Terms of Service
Disclaimer
Contact us
About us