The Pandas Series property is_unique used to determine whether a Series object contain an unique elements. It returns boolean value either True or False.
1 import pandas as pd
2
3 ser1 = pd.Series([1, 2, 3, 4, 5, 2])
4 res1 = ser1.is_unique
5 print('Is Series elements are unique :')
6 print(res1)
7
8 ser2 = pd.Series([1, 2, 3, 4, 5])
9 res2 = ser2.is_unique
10 print('Is Series elements are unique :')
11 print(res2)
In the above example, a Series object is created by passing an array that has duplicate and unique elements. The Series object property is_unique property is accessed that determine individual Series object and returns the result that assigned to the variable that will be printed on console.
1 Is Series elements are unique :
2 False
3 Is Series elements are unique :
4 True
Index with strings
1 import pandas as pd
2
3 index = pd.Index(['Apple', 'banana', 'kiwi', 'apple', 'avocado'])
4
5 print('The original index object :')
6 print(index)
7
8 print('Is Index includes unique elements ?')
9 print(index.is_unique)
In the above example, an Index object is created by passing an array of string. A is_unique property is accessed that returns boolean value True, as it compares elements with case sensitive.
1 The original index object :
2 Index(['Apple', 'banana', 'kiwi', 'apple', 'avocado'], dtype='object')
3
4 Is Index includes unique elements ?
5 True
Index with duplicate strings
Index with duplicate strings
1 import pandas as pd
2
3 index = pd.Index(['apple', 'banana', 'kiwi', 'apple', 'avocado'])
4
5 print('The original index object :')
6 print(index)
7
8 print('Is Index includes unique elements ?')
9 print(index.is_unique)
In the above example, a is_unique property is accessed that returns boolean value False, as Index object includes duplicate string value.
1 The original index object :
2 Index(['apple', 'banana', 'kiwi', 'apple', 'avocado'], dtype='object')
3
4 Is Index includes unique elements ?
5 False
Related options for your search